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Abstract

A comprehensive non-isothermal, three-dimensional computational model of a polymer electrolyte membrane (PEM) fuel cell has been
developed. The model incorporates a complete cell with both the membrane-electrode-assembly (MEA) and the gas distribution flow
channels. With the exception of phase change, the model accounts for all major transport phenomena.

The model is implemented into a computational fluid dynamics code, and simulations are presented with an emphasis on the physical insight
and fundamental understanding afforded by the detailed three-dimensional distributions of reactant concentrations, current densities,
temperature and water fluxes. The results show that significant temperature gradients exist within the cell, with temperature differences of
several degrees K within the MEA. The three-dimensional nature of the transport is particularly pronounced under the collector plates land area
and has a major impact on the current distribution and predicted limiting current density. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fuel cells convert the chemical energy of hydrogen and
oxygen directly into electricity. Their high efficiency and
low emissions have made them a prime candidate for
powering the next generation of electric vehicles, and their
modular design and the prospects of micro-scaling them
have gained the attention of cellular phone and laptop
manufacturers. Their scalability and relative flexibility in
terms of fuel makes them prime candidates for a variety of
stationary applications including distributed residential
power generation. The basic structure and operation prin-
ciple of the polymer electrolyte membrane (PEM) fuel cell
considered here are illustrated in Fig. 1.

The polymer electrolyte consists of a perfluorinated poly-
mer backbone with sulfonic acid side chains. When fully
humidified, this material becomes an excellent protonic
conductor. The membrane, the catalyst (platinum supported
on carbon particle) and the two electrodes (teflonated porous
carbon paper or cloth) are assembled into a sandwich
structure to form a membrane-electrode-assembly (MEA).
The MEA is placed between two graphite bipolar plates with
machined groves that provide flow channels for distributing
the fuel (hydrogen) and oxidant (oxygen from air).
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The hydrogen rich fuel fed to the anode side diffuses
through the porous gas-diffusion electrode (GDE). At the
catalyst layer, the hydrogen splits into hydrogen protons and
electrons according to:

2H, = 4H"' + de~ (1)

Driven by an electric field, the H" ions migrate through the
polymer electrolyte membrane. The oxygen in the cathode
gas stream diffuses through the towards the catalyst interface
where it combines with the hydrogen protons and the
electrons to form water according to:

0, +4H" + 4e = 2H,0 (2)
The overall reaction is exothermic and can be written as:
2H; + O, = 2H,0 + electricity + heat 3)

Several coupled fluid flow, heat and mass transport processes
occur in a fuel cell in conjunction with the electrochemical
reaction. These processes have a significant impact on two
important operational issues: (i) thermal and water manage-
ment; (ii) mass transport limitations. Water management
ensures that the PEM remains fully hydrated to maintain
good ionic conductivity and performance. Water content of
the membrane is determined by the balance between water
production and three water transport processes: electro-
osmotic drag of water, associated with proton migration
through the membrane from the anode to the cathode side;
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Fig. 1. Schematic of a PEM fuel cell.

back diffusion from the cathode; and diffusion of water to/
from the oxidant/fuel gas streams. Without control, an
imbalance between production and removal rates of water
can occur. This results in either dehydration of the mem-
brane, or flooding of the electrodes; both phenomena have a
very detrimental effect on performance and fuel cells have to
be carefully designed to avoid the occurrence of either
phenomenon. Thermal management is required to remove
the heat produced by the electrochemical reaction (up to
~50% of the energy produced during high power density
operation) in order to prevent drying out of the membrane
and excessive thermal stresses that may result in rupture of
the membrane. The small temperature differentials between
the fuel cell stack and the operating environment make
thermal management a challenging problem in PEMFCs.

Because of the highly reactive environment of a fuel cell it
is not possible to perform detailed in situ measurements
during operation. Such information has been sought through
modelling and simulation in order to improve understanding
of water and species transport, optimize thermal manage-
ment and shorten the design and optimization cycles. Mod-
elling of fuel cells is challenging, because the processes
involve multi-component, multi-phase, and multi-dimen-
sional flow, heat and mass transfer with electrochemical
reactions, all occurring in irregular geometries including
porous media. Numerous authors have developed fuel cell
models accounting for various physical processes. The most
prominent earlier works stem from Bernardi and Verbrugge
[3,4] and Springer et. al. [14], who developed one-dimen-
sional, isothermal models of the MEA. Fuller and Newman
[8] published a quasi two-dimensional model based on
concentration theory. The work by Nguyen and White
[12], and Yi and Nguyen [21] was two-dimensional in
nature, but the GDEs were omitted, assuming ‘‘ultrathin”
electrodes. The importance of accounting for temperature
gradients in fuel cells modelling was demonstrated in the
work of Woehr et. al. [20] and Djilali and Lu [7]. The
important issue of water flooding was addressed by Baschuk
and Li in a recent one-dimensional model [2].

Earlier models were primarily analytic and required a
number of simplifications due to the limitations of the
numerical techniques. More recently, a general trend can

be observed to apply the methods of computational fluid
dynamics to fuel cell modelling. Gurau et al. [9] published a
fully two-dimensional model of a whole fuel cell, i.e. two
gas-flow channels separated by the MEA. Um et al. [18] and
Wang et al. [19] have developed a similar model and
included two phase flow. However, the underlying assump-
tion was isothermal behaviour, which is a serious modelling
limitation as we will see later. The local temperature dis-
tribution has a significant impact on the amount of water that
undergoes phase change, and therefore the isothermal
assumption can lead to results that are not physically
representative when phase change is accounted for. Finally
as a result of the architecture of a cell, the transport
phenomena in a fuel cell are inherently three-dimensional,
but no models have yet been published to address this.

In this paper we address simultaneously the need to
account for thermal gradients and multi-dimensional trans-
port using a computational fluid dynamics based approach
that couples convective transport in the gas-flow channels
with transport and electrochemistry in the MEA.

2. Model description

The PEM fuel cell model presented here is a comprehen-
sive three-dimensional, non-isothermal, steady-state model
providing a detailed description of the following transport
phenomena:

multi-component flow;

convective heat and mass transport in the flow channels;
diffusion of reactants through porous electrodes;
electrochemical reactions;

migration of HT protons through the membrane;
transport of water through the membrane;

transport of electrons through solid matrix;

conjugate heat transfer.

The equations governing these processes include the full
mass and momentum conservation equations (Navier—
Stokes equations) governing fluid flow, the species conser-
vation and energy equations and four additional phenom-
enological equations tailored to account for processes
specific to fuel cells [3]:

e the Stefan—Maxwell equations for multi-species diffu-
sion;

e the Nernst—Planck equation for the transport of protons
through the membrane;

o the Butler—Volmer equation for electrochemical kinetics
and;

e the Schlogl equation for the transport of liquid water
through the membrane.

These equations and appropriate boundary conditions
were implemented in their three-dimensional form into
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the commercial computational fluid dynamics code CFX-4.3
(AEA Technology); the implementation required the devel-
opment of an extensive suite of user subroutines. Custo-
mized iterative procedures were also implemented to ensure
effective coupling between the electrochemistry and the
fluid transport processes.

2.1. Model assumptions

A complete fuel cell is an extremely complex system
involving both microscale and macroscale geometric fea-
tures and transport processes. In order to devise a numeri-
cally tractable three-dimensional model of a complete cell it
is necessary to invoke a number of simplifying assumptions.
The most important ones are:

(1) the fuel cell operates under steady-state conditions;

(2) all gases are assumed to be compressible ideal gases,
fully saturated with water vapour;

(3) the flow in the channels is considered laminar;

(4) the membrane is assumed to be fully humidified so
that the electronic conductivity is constant and no
diffusive terms have to be considered for the liquid
water flux;

(5) since it was determined in an earlier study [4] that
cross-over of reactant gases can be neglected, the
membrane is currently considered impermeable for
the gas phase;

(6) the water in the pores of the diffusion layer is
considered separate from the gases in the diffusion
layers, i.e. no interaction between the gases and the
liquid water exists;

(7) the product water is assumed to be in the liquid phase;

(8) Ohmic heating in the collector plates and in the GDEs
is neglected due to their high conductivity;

(9) heat transfer inside the membrane is accomplished by
conduction only, i.e. the enthalpy carried by the net
movement of liquid water is currently neglected;

(10) the catalyst layer is assumed to be a thin interface
where sink and source terms for the reactants and
enthalpy are specified;

(11) electroneutrality prevails inside the membrane. The
proton concentration in the ionomer is assumed to be
constant and equal to the concentration of the fixed
sulfonic acid groups.

Most of the above assumptions are a “‘standard” feature
of almost all previous modelling studies. In addition, com-
monly used assumptions in previous studies were: (i) one or
two-dimensionality; (ii) de-coupling of MEA and flow
channel transport; (iii) isothermal conditions. In the present
model these limiting assumptions are removed. One of the
other major limitations, namely the assumption of a single
phase and of non-interacting water and gas phases in the
pores of the GDEs will be addressed in future work with the
implementation of a two-phase model with both phases
interacting in the same computational domain.

2.2. Modelling domain and geometry

The computational domain that was employed for the
simulations is shown in Fig. 2. In addition to transport across
the MEA (y-direction), the formulation allows us to account
for and investigate the effect of non-uniform transfer rates
and species concentration along the flow channels (x-direc-
tion), as well as the three-dimensional effects in the trans-
verse z-direction due to the geometry (alternating open flow
channels with land areas). These effects are expected to be
particularly important in the regions of the GDEs under the
collector plates and not directly exposed to the flow fields.
We take advantage of the geometric periodicity of the cell in
order to reduce the size of the computational domain and
hence computational cost. Symmetry is therefore assumed in
the middle planes of the flow channel and land areas and
hence only half of each needs to be incorporated in the
domain. This is a valid assumption as long as no cross-flow
takes place between adjacent channels, as in inter-digitated
designs, and as long as the region considered consists of
parallel straight channels, as is the case for the bulk of the
collector plates of an actual fuel cell.

In order to effectively implement the numerical solution
of the various transport equations, three subdomains were
defined within the main computational domain.

e The main domain accounts for the flow, heat and mass
transfer of the reactant gases inside the flow channels and
the GDEs.

e Subdomain I consists of the MEA only, and accounts for
the heat flux through the solid matrix of the GDEs and the
membrane. Hence, the only variable of interest here is the
temperature. Exchange terms between this subdomain
and Domain I account for the heat transfer between the
solid phase and the gas phase.

e Subdomain II is used to solve for the flux of liquid water
through the MEA. The flux of the water in the membrane
is coupled to the electrical potential calculated in Domain
IIT via the Schlogl equation.

e Subdomain III consists of the membrane only and is used
to calculate the electrical potential inside the membrane.

Fig. 2. Three-dimensional computational domain.
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Fig. 3. Computational mesh for the MEA and gas-flow channel regions.
The “empty” blocks on the left corresponds to the bipolar plates, which
have been left out for clarity.

The main domain and three subdomains are all coupled
through appropriate boundary exchange terms and an itera-
tive solution procedure. The computational mesh is shown in
Fig. 3. Due to the large number of coupled equations that are
solved and the overall complexity of the problem, the
number of computational cells was limited to roughly
80,000. The calculations presented here have all been
obtained on a PC with a 450 MHz Pentium II. The number
of iterations required to obtain converged solutions ranged
from 2000 for lower current densities to 20,000 for higher
current densities; the latter required about 50 h of CPU time.

2.3. Model equations

2.3.1. Notation

In the following, the subscript “g” denotes properties of
the gas phase, whereas “1”” stands for the liquid phase and
s> for the solid phase. Different species are denoted by the

ITEE1) T3
l

subscript ““i”’, i.e. the subscript “gi”” denotes the species ‘i
in the gas phase. “w” is used for water (species), “‘sat
means saturation value. Cathode side and anode side proper-

ties are denoted by the subscripts “c’ and ““a”, respectively.

ER]

2.3.2. Fuel cell channels

In the fuel cell channels, the gas-flow field is obtained by
solving the steady-state Navier—Stokes equations, i.e. the
continuity equation:

V- (Pgug) =0 “4)
and momentum equation

V- (pgtty @ ug — 1, V) = =V - (p +3 11,V - u,)

+ V- 1y (Vi)' (5)

The temperature field is obtained by solving the convective
energy equation

V- (pgutgHy — 2gVTy) =0 (6)
here p, is the gas phase density, u = (u,v,w) the fluid

velocity vector, p the pressure, T the temperature, y is the
molecular viscosity and / is the thermal conductivity.

The total enthalpy H is determined from the static (ther-
modynamic) enthalpy /4 via:

Hy = hy + %ué (7

where the bulk enthalpy is related to the mass fraction y
and the enthalpy of each gas by:

hg = Zygihgi (8)

The mass fraction of the different species obeys a transport
equation of the same form as the generic advection-diffusion
equation:

V. (pgug)’gi) -V (pngiVYgi) = Sgi ©

where the i represents oxygen at the cathode side and
hydrogen at the anode side and Dg; is the diffusivity of
the species in the background fluid. The source term S; is
determined by solving the Stefan—-Maxwell equations,
which account for the diffusion of multiple species [15]:

V- xg = in)x]g’ v; —v)) (10)

where v; is the diffusion velocity vector of species i, x the
molar fraction and Dj; the binary diffusivity of any two
species.

The second species on both sides is water vapour, which is
assumed to exist at the saturation pressure, so that the molar
fraction of water vapour is given by

sat
xgy =20 (1)
Dy
The saturation pressure of water vapour has been approxi-
mated by [14]

log,ops*(T) = —2.1794+0.02953T —9.183772 4-1.4454T°
(12)
where T is the temperature in K. The mass fraction is related
to the molar fraction by
XgiM;

= i 13
yg Z.XgiMi ( )

where M is the molecular weight of the different species.
The ideal gas assumption leads to

ngi
;= 14
Pei = pr (14)
and the bulk density becomes:
! i
I (15)
pg pgi

The sum of all mass fractions is equal to unity

> vei=1 (16)

which determines the mass fraction of the third species on
both sides (nitrogen at the cathode and carbon dioxide at the
anode).
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2.3.3. Gas diffusion electrodes

In the porous GDEs the Navier—Stokes equations have to
be corrected for the porosity ¢ of the carbon fiber paper.
Thus, the conservation equation for mass becomes

V - (pgtgtty) =0 a7)
whereas the momentum equation reduces to Darcy’s law:

k
bolly = —M—"Vpg (18)
g

where k, denotes the hydraulic permeability. It was men-
tioned earlier that the liquid water pores are de-coupled from
the gas pores, and Darcy’s law is again used for liquid water
transport:

k
au = ——-Vp, (19)
13

The mass transport equation in porous media becomes
V- (pgegltgysi) = V - (pyDgite Vyei) = S (20)

and the Stefan—-Maxwell equations remain the same:
XgiXgj (

=Y = i-v) 21
Dj

where the binary diffusivities ijff have been corrected for
the porosity. This was done by applying the so-called
Bruggemann correction:

Vv * Xgi

ijff =D * g;'s (22)

Finally, the energy equation in the diffusion layer is given
by

V- (pyegttgHy — 2V Ty) = e f(Ty — Ty) (23)

where the term on the right hand side accounts for the heat
transfer from the solid matrix to the gas phase. f is a
modified heat transfer coefficient that accounts for the
convective heat transfer in W/m? and the specific surface
area m?*/m? of the porous medium. Hence, the unit of f is
[W/m?].

In the solid matrix of the gas-diffusion layer, heat transfer
is calculated via:

V- (AVT) = eof(Ts — T) (24)

2.3.4. Catalyst layer

As mentioned before, the catalyst layer is treated as a thin
interface, where sink and source terms for the reactants are
implemented. Due to the infinitesimal thickness, the source
terms are actually implemented in the last grid cell of the
porous medium. At the cathode side, the sink term for
oxygen is given by

_M02i
4F ¢

So, = (25)

whereas the sink term for hydrogen is specified as

_ MH2 i

2F
where F is the Faraday constant (96487 C/mol) and i is the
local current density. Again, M is the molecular weight of
the species i. The product water is assumed to be in liquid
form, and hence the source term can be written as

My,0
2F

The generation of heat in the cell is due to entropy
changes as well as irreversibilities due to the activation
overpotential #,., [11]:

. [T(=AS)
0= [

Su, =

(26)

Sn,0 = Ic 27

+ mm] 2 (28)

where T is the temperature, AS, is the entropy change in the
chemical reactions, n.- is the number of electrons trans-
ferred and 1, is the activation overpotential. Because both
these contributions are small at the anode side, the source
term is currently neglected here. The overpotential 7, can
be estimated a priori. This does not introduce a large error,
since the range of the activation overpotential at the cathode
side is well known, depending on the catalyst loading and the
expected exchange current density.

As can be seen from Eqs. (25)-(28), for an accurate
solution of the reactant gas distribution inside the fuel cell,
it is crucial to obtain the local current density distribution i,
which is described by the Butler—Volmer equation [1]:

. sof | €O o F o F
ic = ig' <6—02f> [eXp (ﬁ nacl) — exp (— ﬁnam)] (29)
2

and

1/2
i = jref CHy ex ﬁ —ex _g
a 0 C;.if p RT nuc[ p RT nact
(30)

where ¢ denotes the concentration of the reactants, and o,
and o, are the so-called transfer coefficients. The reference
exchange current density i{)ef depends on various parameters
such as operating temperature and catalyst loading, and a
number of experiments have been conducted to quantify this

dependence empirically [13,16].

2.3.5. Membrane model

In the membrane, the model accounts for the flux of liquid
water and the protonic flux together with the distribution of
electrical potential @ are being considered. The transport of
liquid water through the membrane is governed by a mod-
ified version of Darcy’s law, the Schlogl equation [3]:

k k
u =2 zciF -V — 2. Vp 31)
2 W
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where kg4 denotes the hydraulic permeability, z; is the fixed-
charge number in the membrane, c; is the fixed-charge
concentration and y; is the liquid water viscosity. This
equation accounts for two different water transport pro-
cesses: the electro-osmotic drag whereby hydrogen protons
migrating through the membrane drag water molecules with
them, and pressure driven flux, which is usually directed
from the cathode side to the anode side. Strictly speaking, a
diffusive term has to be accounted for as well, since the back
diffusion of water can play an important role for water
management schemes. However, when the membrane is
fully humidified, as is assumed here, this term drops.
Heat transfer in the membrane is governed by

i2

Viimem - VT = - (32)
where ¥« is the electric resistance of the membrane material.
Note that this implies that the transport of energy by the
liquid water is neglected and the membrane is considered as
a heat-conducting solid. The term on the right hand side of
the equation denotes Ohmic heating inside the membrane.
The local current density inside the membrane is obtained
from Ohm’s law:

i=—kV (33)

Finally, for the electrical potential in the membrane, it can be
shown that for a fully hydrated membrane it is governed by
the Laplace equation [4]:

V2P =0 (34)

2.3.6. Bipolar plates

Bipolar plates serve to transfer the electrons and separate
different cells. Since the electrical conductivity of graphite
Agr is high, Ohmic losses are neglected, and the energy
equation reduces to

Vig VT =0 (35)

2.3.7. Cell potential
The cell potential E is obtained by substracting all over-
potentials (losses) from the equilibrium potential, i.e.

E= E(;,p ~ Nact = Mo = Mmem (36)

where E‘}vp is the equilibrium potential for a given tempera-
ture and pressure, 7, the activation overpotential at both
sides, 1 are the Ohmic losses in the GDE plus contact
resistances and #,,.,, is the Ohmic loss in the membrane.
The equilibrium potential E%p is a function of pressure
and temperature and is determined using the Nernst law [5],

AS RT 1
0 _ 0 0
Er,=E +ﬁ(T—T)+ﬁ[lanz+§lnpoz} (37)
where p denotes the partial pressure of the species, n is the
number of electrons transferred in the reaction, and AS is the

change in entropy. The standard reversible potential E° is
given by [5]

B AG°
- nF
where AG? is the change in the standard Gibbs free energy of

the reaction. Using standard values for the entropy produc-
tion, Eq. (37) yields [2]

(38)

E),=1.229—0.83 x 107(T —298.15)+

1
x 4.31 x IOST[lan2 +3 lnpoz} (39)

2.4. Boundary conditions

Boundary conditions have to be applied for all variables of
interest in each computational domain. In order to reduce
computational cost, we take advantage of the geometric
periodicity of the cell. Hence symmetry is assumed in the z-
direction, i.e. all gradients in the z-direction are set to zero at
the x—y plane boundaries of the domain. With the exception
the channel inlets and outlets, a zero flux condition is applied
at all x-boundaries (y—z planes).

The inlet values at the anode and cathode are prescribed
for the velocity, temperature and species concentrations
(Dirichlet boundary conditions). The inlet velocity is a
function of the desired average current density iy, the
geometrical area of the membrane Ayga, the channel
cross-section area Ay, and the stoichiometric flow ratio (,
according to:

1 1 RTin,c 1

Lave
- — 40
Uine = (¢ AP MEAxOLin e Am (40)
and

iave 1 RTina 1
na = [y & 41
Uina é’d F MEAXHLin Pain Ach ( )

where R is the universal gas constant, 7j, is the inlet
temperature and pj, is the inlet pressure.

At the outlets of the gas-flow channels, only the pressure
is being prescribed as the desired electrode pressure; for all
other variables, the gradient in the flow direction (x) is
assumed to be zero (Neumann boundary conditions).

Since the fluid channels are bordered by the collector
plates, no boundary conditions have to be prescribed here
and conjugate heat transfer, impermeability and no-slip
conditions are implemented implicitly at solid—fluid inter-
faces within the domain. At the outer boundaries of the
bipolar plates (y-direction), boundary conditions need only
to be given for the energy equation. This can be done by
prescribing the heat flux or the temperature distribution.
In the present simulations a zero heat flux condition was
used, 0T /0y = 0. This is not an entirely physical condition,
but is adequate for the present simulations in which the focus
is on model validation and identification of key transport
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processes. In future work we intend to implement a cooling
flow channel in the computational domain to remove arbi-
trary specification of the heat flux or temperature.

2.4.1. Subdomain I

As discussed earlier, three subdomains are defined for
numerical efficiency. Subdomain I is used to solve for the
heat flux through the solid matrix of the porous GDE. The only
variable of interest here is the temperature, and it is assumed
that all the heat transfer takes place to and from the gas phase
inside the porous medium only. Adiabatic boundary condi-
tions are therefore applied at all boundaries of this domain

or

=0 42)

2.4.2. Subdomain 11

For the liquid water transport through the MEA in Sub-
domain II, the pressure is given at the outer boundaries of the

GDE, i.e. the channel/GDE interface

P,) = 3atm
and

P.) = 5atm
Table 1

(43)

(44)

Geometrical, operational, electrode and membrane parameters for the base

case

Property Value
Channel length, 1 0.05m
Channel height, h 1.0x103 m
Channel width, w, 1.0x1073 m
Land area width, w 1.0x1073 m
Electrode thickness, 7, 0.26x1073 m
Membrane thickness, fmem 0.23x1073 m
Inlet fuel and air temperature, Tj, 80 °C

Air side pressure, p. 5 atm

Fuel side pressure, p, 3 atm

Air stoichiometric flow ratio, (. 3

Fuel stoichiometric flow ratio, {, 3

Relative humidity of inlet gases, & 100%
Oxygen/nitrogen ratio, 0.79/0.21
Gas phase electrode porosity, & 0.4 [4]
Electronic conductivity, ¢ 6000 S/m
Effective thermal conductivity, Aeg 75 W/mK [9]

Heat transfer coefficient between solid
and gas phase, f§

Transfer coefficient, anode side, o,

Transfer coefficient, cathode side, o,

Ref. exchange current density, anode, lf)eg

Ref. exchange current density, cathode, i{fg

Entropy change of cathode side reaction, ASp

Ionic conductivity of the membrane, k

Protonic diffusion coefficient, Dy+

Fixed-charge concentration, c¢

Fixed-site charge, zf

Electrokinetic permeability, k¢

Hydraulic permeability, &,

Thermal conductivity of the membrane, 4

7.0x10° W/m?

0.5

1[17]

0.6 A/cm?
4.4x1077 Alcm?
—326.36 J/(mol K) [11]
0.06 S/cm
4.5%107° m?/s? [4]
1200 mole/m? [4]
-1

2.0x10720 m? [4]
1.8x10718 m? [4]
0.67 W/mK [10]

At the interfaces exposed to the land area, no-flux conditions
are imposed.

2.4.3. Subdomain II1

Finally, for the membrane domain, where the only vari-
able of interest is the electric potential, a reference potential
value of zero is arbitrarily set at the anode side

®=0 (45)

and at the cathode side, the potential distribution at the
membrane/catalyst interface is computed from [4]

0P L.
a—y = — K—ff [l - FCfVSI,mem] (46)

2.5. Modelling parameters

The parameters used for the base case simulations pre-
sented here are shown in Table 1. Since the model presented
here was initially developed by extending the formulation of
Bernardi and Verbrugge [3.4] to three-dimensions, many of
the key parameters defined by these authors are still used
here. It is important to note that because this model accounts
for all major transport processes and the modelling domain
comprises all the elements of a complete cell, no parameters
needed to be adjusted in order to obtain physical results.
When comparing our results with experiments published in
the literature, however, many of the experimental data such
as the stoichiometric flow ratio or the exact cell geometry
and dimensions are unknown, which makes a quantitative
comparison difficult. The strength of the current model is
clearly to perform parametric studies and explore the impact
of various parameters on the transport mechanisms and on
fuel cell performance.

For the binary diffusivities D;; required in the Stefan—
Maxwell equations, experimentally obtained values at atmo-
spheric pressure py were taken and scaled with the tem-
perature and pressure according to [6]

p [T\
Dy = Dy(To, po) £ [ 47
ij i(To Po)po <To> 47

Table 2 lists the reference binary diffusivities.

Table 2
Binary diffusivities at reference temperatures

Gas-pair Reference Binary diffusivity,
temperature, Ty (K) Dy (cm?/s)
Du,—1w,0 307.1 0915
Dy, —co, 298.0 0.646
Di,0-co, 307.5 0.202
Do,-n,0 308.1 0.282
Do, x, 293.2 0.220
Dy,0-nN, 307.5 0.256
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3. Results and discussion
3.1. Fuel cell performance

The fuel cell performance is shown in terms of the
polarization in Fig. 4. The results agree well with the
experiments [17] in the low and intermediate current density
region. The discrepancy at high current densities is attrib-
uted to the fact that experimental data at the higher current
densities was insufficient, and in fact the experimental curve
in this region is a curve fit weighted by the lower current
density data. It should also be pointed out that the exact
geometry of the fuel cell used in the experiments is not
known. The ability of the present model to reproduce the
polarization curve is a necessary validation check but by no
means especially informative since one can always obtain
good agreement between experimental results and any
model that somehow captures the logarithmic drop-off in
the low current density region and the Ohmic losses inside
the membrane. The strength of the numerical approach is in
providing detailed insight into the various transport mechan-
isms and their interaction, and in the possibility of perform-
ing parameters sensitivity analyses.

3.2. Reactant gas and temperature distribution

One of the major advantages of using a model as detailed
as the one presented here is the detailed distribution of the
reactant gases inside the fuel cell. Such distributions, which
cannot be measured in situ, provide valuable information
about the onset of concentration losses and their effect on the
limiting current density. Fig. 5 shows the reactant gas
distribution in the fuel cell channels and the gas-diffusion
layers. The molar fraction of oxygen decreases noticeable
inside the gas-diffusion layer, and the effect of oxygen
depletion is significant, particularly under the land areas.
A realistic prediction of the limiting current density cannot
be obtained from a two-dimensional model in which infi-
nitely wide channels are assumed and the area that is not
exposed to the gas-flow channels is not accounted for.
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Fig. 4. Comparison of the experimental and simulated polarization curves.
Also shown is the power density curve obtained with the model.
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Fig. 5. Three-dimensional distribution of reactant gases in the gas-flow

The effect of the “land area” is even more pronounced at
higher current densities, as shown in Fig. 6. Furthermore, for
a higher current density at otherwise similar conditions, the
oxygen molar fraction at the catalyst layer decreases due to
diffusion limitations. Note that the stoichiometric flow ratio
is the same for both cases, i.e. three times the amount of
oxygen consumed enters the cell. Since the composition of

Fig. 6. Molar oxygen fraction at the catalyst layer for two different current
densities: 0.2 A/cm? (upper) and 1.0 A/cm? (lower).
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Fig. 7. Dimensionless current density distribution at the catalyst layer
interface for three different nominal current densities: 0.2 A/cm? (upper);
0.8 A/cm? (middle); 1.4 A/em? (lower). The dashed lines represent the
boundaries between the flow channel and the land area.

the inlet gases is the same, this is accomplished by an
increase in velocity for a higher current density. At an
average current density of 1.4 A/cm?, the molar oxygen
fraction at the catalyst layer is almost zero throughout the
interface, indicating that the limiting current density has
been reached.

The detailed oxygen distribution at the catalyst layer is of
importance, because it determines the local current density,
according to Eq. (29). Assuming a constant activation over-
potential throughout the catalyst interface, this results in local
current densities as shown in Fig. 7. The local current
densities here have been normalized by the nominal current
density in each case. It can be seen that for a low nominal
current density, the distribution is quite uniform with varia-
tions from 75 to 125% relative to the nominal current density
of 0.2 A/cm?. This changes for intermediate current densities,
where under the land areas a noticeable decrease takes place
and the minimum current fraction drops below 40% of the
average (nominal) current density of 0.8 A/cm?. The max-
imum, however, remains almost the same at just over 130%.
This pattern changes further at high current densities, where
the maximum local current density can be as high as three
times the average current density near the cathode side inlet.

With an increase in current density, the fraction of the
current density generated under the area exposed to the
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Fig. 8. Fraction of the total current generated under the area exposed to the
gas-flow channels.

gas-flow channels increases steadily, as shown in Fig. 8. The
fraction of the current generated under the channel area
increases almost linearly with the current density, the max-
imum being just under 80% at a current density close to the
limiting current density. This is important, since it provides
an indication of how well the catalyst is being used in these
areas. For optimal fuel cell performance, a uniform current
density generation is desirable, and this could only be
achieved with a non-uniform catalyst distribution, possibly
in conjunction with non-homogeneous GDEs.

One of the most important features distinguishing the
present model is the fact that it is non-isothermal. The
temperature distribution inside the fuel cell has important
effects on nearly all transport phenomena, and knowledge of
the magnitude of temperature increases due to irreversibil-
ities might help preventing failure. Fig. 9 shows that the
increase in temperature can exceed several degrees Kelvin
near the inlet area, where the local current density is highest.
Due to the low electric conductivity of the polymer electro-
lyte, the temperature maximum occurs inside the membrane.
In general, the temperature at the cathode side is slightly
higher than at the anode side; this is due to the reversible and
irreversible entropy production. The detailed temperature
distribution is also key for the eventual extension of the
current model to include multiphase phenomena. Phase
change is not yet accounted for, but the mechanism shall
be briefly outlined here. In the first place, the temperature
rise at the cathode determines, how strong the under-satura-
tion of the gas phase in this area is. This in turn gives rise to
the evaporation of liquid product water, which provides
cooling and thus offsets the temperature rise. Hence, any
implementation of phase change in an isothermal model can
not lead to physically representative results.

Finally, the water flux and the potential distribution is
presented in Fig. 10. The flux of liquid water is governed by
three mechanisms: electro-osmotic drag from the anode to
the cathode, back diffusion driven by a concentration gra-
dient from the cathode to the anode and, if a pressure
gradient exists, convection which is usually directed from
the cathode to the anode in order to counter-balance the
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Fig. 9. Three-dimensional temperature distribution inside the fuel cell at a
nominal current density of 1.2 A/cm?.

electro-osmotic drag. Assuming a fully humidified mem-
brane implies no concentration gradient exists, and in any
case, the effect of the diffusion on the water flux through the
membrane has been found to be small compared to convec-
tion and electro-osmotic drag. As illustrated in Fig. 10, the
pressure gradient might outweigh the effect of the electro-
osmotic drag for low current densities, and the net flux of
water is directed from the cathode to the anode. Humidifica-
tion schemes have to be therefore devised for the cathode
side only. At a current density of 0.4 A/cm?, the flux of water
is reversed. Near the inlet area, where the local current is

Fig. 10. Liquid water flux (vectors) and potential distribution (contours)
inside the membrane for three different current densities: 0.2 A/cm?
(upper); 0.4 A/cm? (middle); 0.6 A/cm? (lower).
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Fig. 11. Net drag coefficient o for the flux of water through the membrane
for two different values of the electrokinetic permeability of the
membrane.

strongest, the electro-osmotic drag dominates convection,
and water flows from the anode to the cathode. Near the
outlet, the current is weaker and the net water flux is directed
towards the anode.

The net flux of water through the membrane is often
characterized by the parameter o, the net amount of water
molecules dragged through the membrane per hydrogen
proton. Fig. 11 shows the net water flux for two different
values of the electrokinetic permeability of the membrane. If
the value cited by Bernardi and Verbrugge is used [4], «
becomes unphysically high. A comparison with the model
published by Yi and Nguyen [21] reveals that reducing the
permeability to 2.0 x 1072° m? as was used in the current
base case yields a more realistic values for «. Still, these
results differ substantially from the experimentally deter-
mined values of o, which range from 0.6 at low current
densities to around 0.3 for intermediate current densities in
the absence of a pressure gradient. The membrane model has
therefore to be improved in order to predict the amount of
water that need to be supplied at the electrodes in order to
prevent drying out of the membrane.

4. Conclusions

A comprehensive three-dimensional computational
model of a PEM fuel cell has been developed. With the
exception of phase change, the model accounts for all major
transport phenomena in the flow channels, electrodes and
electrolyte membrane. Results that are physically consistent
and in good agreement with available experimental data are
obtained. The three-dimensional nature of the distribution of
flow velocities, species concentration, mass transfer rates,
electric current and temperature was clearly illustrated by
the simulations. The capabilities of the model for providing
detailed insight into water transport mechanisms and the
onset of mass transport limitations was demonstrated, and its
potential for parametric studies of interest in design and
prototyping were also illustrated.
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Though this comprehensive model represents to our
knowledge the only three-dimensional model developed
to date, a number of important mechanisms and phenomena
need to be incorporated to increase its generality and
usefulness. Work is currently in progress to account for
(a) the effect of phase change of water, and (b) partial
dehydration of the membrane during operation. Finally
the electrochemistry in the computational model relies
on first order kinetics and empirical data. Further work in
this area is required on both theoretical and experimental
fronts.
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